GREAT SALT LAKE MINERALS & CHEMICALS COMPORATION

A SUBSIDIARY OF GULF RESOURCES & CHEMICAL CORPORATION PO. BOX 1190 O 785 NORTH 10500 WEST O OGDEN, UTAH 84402 O TEL. (801) 731-3100 O TWX (910) 971-5910

April 14, 1983

PCI (057) 002

Mr. Landlorn
USU Soils Lab
UMC 48
Utah State University
Logan, UT 84322

Dear Mr. Landlorn:

Per our conversation last week I am sending fourteen soil samples to you via UPS. These samples are to be used to determine how to replant two gravel pits now in use at Great Salt Lake Minerals & Chemicals Corporation. Attached with this letter is a copy of a letter received from Susan Linner, a Reclamation Biologist with the Utah State Department of Natural Resources. Her recommended analysis for the samples are:

Soil Texture
pH
Electrical Conductivity (EC)
Cation Exchange Capacity (CEC)
Sodium Absorption Ratio (SAR)
Percent Organic Matter
Available Potassium
Soluble Calcium
Magnesium
Sodium

To this, perhaps we should add:

Total Nitrogen Phosphorous Potassium

A purchase order will be issued by Mike Gale, our Purchasing Agent, to cover the cost of the analysis. The purchase order should read that the analysis should not exceed \$500.00. If there is any problem with that, let me know.

Mr. Landlorn April 14, 1983 Page 2

The samples were screened at ten mesh on site. The percent +10 mesh on the samples is as follows:

Sample		%	+10 Mesh
Little Mounta	in A		58.3
	В		60.7
	C		53.9
	*D		78.6
Promontory	A		66.8
	В		71.4
	C		65.4
	D		55.6
	E		69.9
	F		52.6
	G		55.9
	H		72.9
	I		27.1
	J		63.9

Our experience here at Great Salt Lake Minerals & Chemicals Corporation at this type of reclamation is limited. Any suggestions you may have would be appreciated.

Sincerely,

Larry Sower

UTAH STATE UNIVERSITY LOGAN, UTAH 84322

SOIL, PLANT and WATER ANALYSIS LABORATORY UMC 48

Great Salt Lake Minerals & Chemical Corporation ATTN: Larry Sower

P.O. Box 1190

765 North 10500 West Ogden, Utah 84402

*Ident. PROM A
B
C
D
E I.M A 0 C B HOF Sand 90 16 62 82 85 hydrometer (%) 38 52 96 21 58 58 Silt 25 11 8 11 8 48 2 5 5 30 40 34 Clay 13 28 22 14 10 12 13 SICL IS SIZ CL IS T Texture* mmhos/cm ECe 2.8 1.7 10.8 13.3 7.1 6.7 15.1 16.6 3.6 1.0 CEC .02 .04 meq/100g Ca Mg .06 .02 .04 .15 .07 H20-So1. .02 .05 .05 .03 .01 .10 .06 2.3 1.49 22.0 .18 2.6 .04 .08 .03 .08 Na .03 .51 .21 .48 1,5 1.4 2.5 8.3 4.9 SAR Matter % Organic 1.43 2.10 . 38 .34 .31 .07 .14 .38 22 27 29 22 41 29 20 58 24 22 26 31 SP* Nitrogen % Total .02 .01 .02 9.6 2.6 4.8 1.1 NaHCO3--ppm 171 27 390 152 107 176 201 337 | = 17 139 325 8.4 8.6 7.9 8.4 8.2 8.5 7.9 8.1 PH

USU Log #'s 83-782-795 / received on 4/19/83.

*Texture - SL = Sandy Loam

L = Loam

CL = Clay Loam

S = Sand

SICL = Silty Clay Loam

LS = Loamy Sand

Donomorm

^{*}LM=Little Mountain, PROM=Promontory
*SP=Saturation Percentage

COMMENTS AND RECOMMENDATIONS:

infiltration rate, etc.). pH is acceptable for all but PROM G. The high SAR confirms a probable sodium problem (poor

Texture: The sands, loamy sands and some sandy loams will have poor water - holding capacity, and soluble N will leach out easily. Plant drought - resistant varieties.

much to be more specific on this. Sampling depth and time since latest precipitation (and amount of it) affect test values too ECe (soluble salts): Watch for possible salt problems in those testing higher than 1.5 mmhos/cm.

Organic Matter: All but PROM A and PROM H are very low. Anticipate erosion on slopes.

Nutrients

in the soil. Apply enough to feed the crop (35-50 lbs N per acre without irrigation). Nitrogen: Total N has no value in predicting N supply to plants. Assume there is no N

Phosphorus:

ation costs.)		
get maximum benefit from ap	75	.4-1.1
may want to double these to	60	2.6-3.6
(These are minimum amounts;	50	4.0-5.1
		9,6
	2.5	
	Apply (lbs P_0_/ acre)	Soil Test P

Potassium: Apply 100-200 lbs K20 per acre to PROM C, PROM F, and possibly PROM I and PROM J.

Lass

